Title | A machine learning approach for online automated optimization of super-resolution optical microscopy. |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Durand A, Wiesner T, Gardner M-A, Robitaille L-É, Bilodeau A, Gagné C, De Koninck P, Lavoie-Cardinal F |
Journal | Nat Commun |
Volume | 9 |
Issue | 1 |
Pagination | 5247 |
Date Published | 2018 12 07 |
ISSN | 2041-1723 |
Abstract | Traditional approaches for finding well-performing parameterizations of complex imaging systems, such as super-resolution microscopes rely on an extensive exploration phase over the illumination and acquisition settings, prior to the imaging task. This strategy suffers from several issues: it requires a large amount of parameter configurations to be evaluated, it leads to discrepancies between well-performing parameters in the exploration phase and imaging task, and it results in a waste of time and resources given that optimization and final imaging tasks are conducted separately. Here we show that a fully automated, machine learning-based system can conduct imaging parameter optimization toward a trade-off between several objectives, simultaneously to the imaging task. Its potential is highlighted on various imaging tasks, such as live-cell and multicolor imaging and multimodal optimization. This online optimization routine can be integrated to various imaging systems to increase accessibility, optimize performance and improve overall imaging quality. |
DOI | 10.1038/s41467-018-07668-y |
Alternate Journal | Nat Commun |
PubMed ID | 30531817 |
PubMed Central ID | PMC6286316 |