An E3-ligase-based method for ablating inhibitory synapses.

TitleAn E3-ligase-based method for ablating inhibitory synapses.
Publication TypeJournal Article
Year of Publication2016
AuthorsGross GG, Straub C, Perez-Sanchez J, Dempsey WP, Junge JA, Roberts RW, Trinh LA, Fraser SE, De Koninck Y, De Koninck P, Sabatini BL, Arnold DB
JournalNat Methods
Date Published2016 Jun 6
ISSN1548-7105
Abstract

Although neuronal activity can be modulated using a variety of techniques, there are currently few methods for controlling neuronal connectivity. We introduce a tool (GFE3) that mediates the fast, specific and reversible elimination of inhibitory synaptic inputs onto genetically determined neurons. GFE3 is a fusion between an E3 ligase, which mediates the ubiquitination and rapid degradation of proteins, and a recombinant, antibody-like protein (FingR) that binds to gephyrin. Expression of GFE3 leads to a strong and specific reduction of gephyrin in culture or in vivo and to a substantial decrease in phasic inhibition onto cells that express GFE3. By temporarily expressing GFE3 we showed that inhibitory synapses regrow following ablation. Thus, we have created a simple, reversible method for modulating inhibitory synaptic input onto genetically determined cells.

DOI10.1038/nmeth.3894
Alternate JournalNat. Methods
PubMed ID27271196

Funding

Our research endeavors are made possible by the following agencies:

Canadian Institutes of Health Research - Instituts de recherche en santé du Canada Fonds de recherche du Québec – Nature et technologies (FRQNT)Fonds de la recherche en santé du Québec   Natural Sciences and Engineering Research Council of Canada (NSERC) - Conseil de recherche en sciences naturelles et en génie du Canada (CRSNG)innovation.caHuman Frontier Science ProgramCanada First Research Excellence FundSentinelle Nord